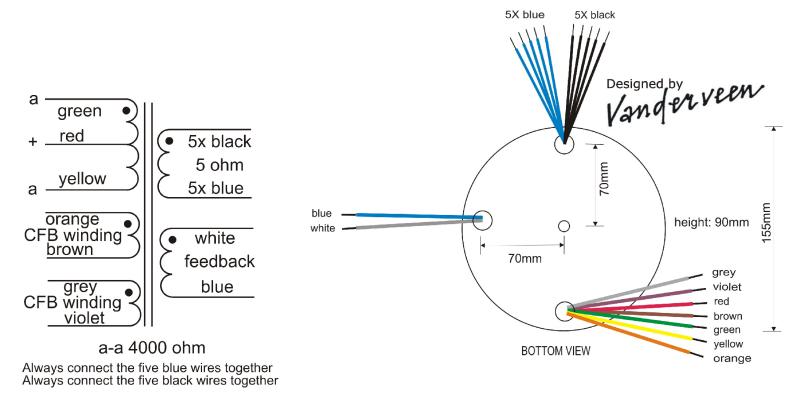
This special transformer is designed for 2 EL34 tubes in the famous Unity Coupled mode. The effective primary impedance is 4 kOhm and the secondary is at the standard 5 Ohm impedance. The 70 Watt power bandwidth ranges from 14 Hz up to 440 kHz. A separate feedback winding allows advanced feedback topologies. See (*) for a description of this transformer.

(*) Menno van der Veen: High-end Valve Amplifiers 2, New models and applications; Elektor; ISBN: 978-0-905705-90-3; chapter 3.13

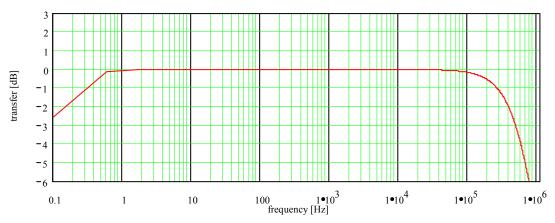

dimensions: 155mm x 90mm

weight: 4,6 Kg.

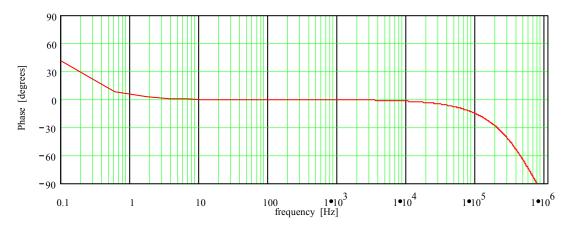
price: 235€

Transformer is fully potted in aluminium black textured shell.

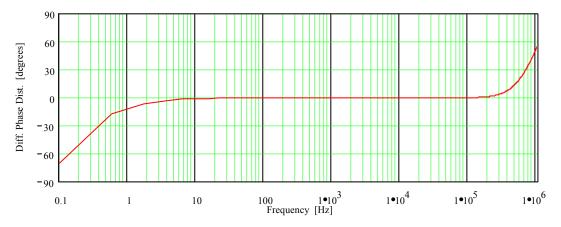
technical data:


WIDE BANDWIDTH TOROIDAL PUSH-PULL TUBE OUTPUT TRANSFORMER

Type and Application			VDV-1070-UC.	
Primary Impedance	:		Raa = 4	$[k_{\Omega}]$
Secondary Impedance	:		Rls = 5	$[\Omega]$
Turns Ratio Np/Ns		:	Ratio = 28.284	[]
UL-tap:			tap = -100	[%]
Cathode Feedback Ratio	:		cfb = 100	[%]
1 dB Frequency Range [Hz to kHz]	(3)	:	flf = 0.416	fhf = 110.074
-1 dB Frequency Range [Hz to kHz]	(3)	:	f11 = 0.177	fh1 = 244.565
-3 dB Requency Range [Hz to kHz]	(3)	:	f13 = 0.09	fh3 = 450.161
Nominal Power (1)		:	Pn = 70	[W]
- 3 dB Power Bandwidth starting at	:		fu = 14	[Hz]
Total primary Inductance (2)		:	$Lp = 1.574 \cdot 10^3$	[H]
Primary Leakage Inductance		:	lsp = 0.67	[mH]
Effective Primary Capacitance	:		cip = 0.388	[nF]
Total Primary DC Resistance	:		Rip = 78.4	$[\Omega]$
Total Secondary DC Resistance	:		Ris = 0.18	$[\Omega]$
Tubes Plate Resistance per section	:		ri = 0.53	$[k\Omega]$
Insertion Loss	:		Iloss = 0.235	[dB]
Q-factor 2nd order HF roll-off (5)	:		Q = 0.501	[]
HF roll-off Specific Frequency (5)	:		Fo = 696.834	[kHz]
Quality Factor (5)		:	$QF = 2.349 \cdot 10^6$	[]
Quality Decade Factor = log(QF) (5)	:		QDF = 6.371	[]
Tuning Factor (5)	:		TF = 2.122	[]
Tuning Decade Factor = log(TF) (5)	:		TDF = 0.327	[]
Frequency Decade Factor (4,5)	:		FDF = 6.698	[]


- (1): calculated under the conditions of balancing the DC-currents and the AC-anode voltages of the powertubes driving the transformer
- (2): measured at 230Vrms at 50Hz over total primary
- (3): calculation at 1 Watt in Rls; ri and Rls are pure Ohmic
- (4): defined as FDF = log(fh3/fl3) = number of frequency decades transfered
- (5): ir. Menno van der Veen; Theory and Practise of Wide Bandwidth Toroidal Output Transformers; preprint 3887, 97th AES Convention San Francisco
- (C): Copyright 1994 Vanderveen; Version 1.7; results date 2-2-2012. Final specs can deviate 15% or improve without notice

TRAFCO TOROIDAL PUSH-PULL TRANSFORMER; VDV-1070-UC


Frequency Response; Vertical 1 dB/div; Horizontal .1 Hz to 1 MHz (3)

Phase Response; Vertical 30 deg./div; Horizontal .1 Hz to 1 MHz

Differential Phase Distortion; vert. 30 deg./div; hor .1 Hz to 1 MHz See: W.M.Leach, Differential Time Delay..; JAES sept.89 pp.709-715

(C): Copyright 1994: Ir. bureau Vanderveen